

Allswell # 912, Smart Valley Building B, 30 Songdo Mirae-ro, Yeonsu-gu, Incheon TEL 032) 225-5028, FAX 032) 225-5030

4th Generation Filter-less Fume Elimination System **TCM SOLUTION**

Air Tech.

Leaping

Leaping from South Korea's first professional air technology company to become a world-renowned air technology specialist company.

Established in 2015, ALLSWELL is Korea's first company specializing in air technology and provides customized solutions based on an optimized design given space characteristics and air flow.

Value and Mission

ALLSWELL protects human life and health by creating space for people to breathe freely. We put the greatest value on "people." We create a healthy and safe future for humanity with technology for people, and furthermore air technology for the world.

Management Philosophy

A company that contributes to society based on the happiness of its members! ALLSWELL pursues the "value" of "togetherness."

CUSTOMER SATISFACTION

Implementation Energy

- Maximization of reliability with the best-performance air system - Satisfaction improvement through optimal cost-effectiveness - Strengthening partnerships through differentiated services

AllsWell

ALLSWELL Website: http://www.alls-well.co.k (Scan the QR code to get connected to the website.)

REVENUE **GENERATION**

Outcomes

Improvement in customer reliability Development of growth engines - Development and diversification - Contribution to the society

HAPPINESS OF EMPLOYEES

Growth Engine

Motivation through the pursuit of happiness of our employees Consolidation of foundation for business growth based on passion

System Overview

Completely **Eliminate Emissions** with "Water"

%

₿

0

0

 \square

Wet Type Filter-Less Air Purification System!

It is a unique air technology that purifies emissions using water without filters, and it is the most efficient solution to problems in rolling processes.

Wet Type Filter-Less Fume Elimination System(W-FLES)

- substances

 Control Space Spray Assem Converging S Venturi Throation Diverging Set Cyclone Seppi Negative Plet Circulation W Spray Pump Drain Pump 	e bly Sect at ctic arat nur /ate	tion on or n er Ta	S	yst	e
@ Stack	0000	8	8	0000	

Purification Concept of W-FLES

 Filters are not used → No blockage Water recirculation system • Optimized for removing iron dust, gas or viscous pollutants High temperature gas treatment possible

W-FLES

Most optimized for high

temperature gas operating

Differences

conditions

Core Technology cyclone and gravitational effects

 $\cap \frown$

From Process Status Identification to Overall System Design, We Provide Solutions for Rolling Process Conditions

58768

11

Designed through optimal system design and accurate diagnosis from pollutant analysis to exhaust air quality,

W-FLES reduces emission substance concentration and fume scattering for productivity improvement to reduce product failure rates, minimize maintenance costs, and improve odor problems, contributing to corporate innovation.

05

A system that uses water to eliminate pollutants generated during rolling

Suitable for emissions of steam containing metallic contaminants or highly viscous

• There is no filter because emissions and water are combined for purification by gravity and centrifugal force generated by acceleration from pressure difference.

Accurate ΔP calculations based on acceleration of venturi throat
 Accurate calculations of diameter and height to maximize centrifugal force inside

Chosen by Global Steel Companies

Industrial Air Technology!

Based on W-FLES which is applied at Korea D Steel for the first time in Korea, ALLSWELL's TCM¹⁾ specialized Industrial Air Technology is being recognized by global steel makers including World No.2 biggest chinese company.

1) TCM : Tandem Cold rolling Mill

Major Project Performance and Progress

Productivity improvement and operating cost reduction

- Korea D Steel (Completed in December 2015)
- World's first application of W-FLES
- Productivity improvement
- TVOCs, odor reduction
- Reduced operating costs (USD 360,000/year)
- Replacement of the SMS design facility

China B Steel (Completed in December 2018)

- FAT result: 7 guaranteed items satisfy the criteria
- Oil mist concentration, odor, NMHC concentration, air volume, water mist scattering, noise,
- chimney rain phenomenon
- Replacement of SMS facility

China B Steel

- Further discussions underway on two production lines
- Planning sequential progress
- in the first half of 2020
- Current SMS facility being applied

China S Steel

- Had the first meeting in December 2018
- Completed technical agreement in 2019
- Current MITSUBISHI facility being applied

China A Steel

- Had the first meeting in December 2017
- Completed technical agreement in 2019
- Current SMS facility being applied

Hard
Simple
Average
Improvement
Improvement

Issues of existing process ventilation purification system (filter-type dust collector)

- Odor occurrence: Accumulation and decay of emissions

Project History of Chinese Company B

• Filter clogging and performance deterioration: Reduced capture of emissions

Additional costs incurred: Filter cleaning, replacement, etc.

Resolved with Filter-less Air Purification System

Improvements after installation of filter-less air purification <u>system</u>

 Reduced defect rate Reduced pollution around equipment and surface defects due to moisture

Cost Improvement RImproved required costs Improved power usage Productivity improvement

Environmental Improvement Prevented oil contamination Improved worker satisfaction Reduced contaminant emissions and odorsimprovement

Fundamental Problem Cause is Resolved

Accurately identifying and diagnosing problems in the rolling process, cost reduction, environmental improvement and product quality is improved by installing an optimized air purification system..

D Steel Installation Results

Project Overview

- Construction completed:
- December 2015
- Installation period: 5.5 days
- (including dismantling) • Airflow: 3,500CMM
- (Max 5,000CMM)

Improvement Requirement

• Need to resolve issues with the existing TCM fume eliminator

Quality Improvement	 Reduced product contamination by easily eliminating pollutants such as oil and iron→ Defect rate reduced Reduced moisture condensation in the rolling equipment→ Reduced facility contamination and surface defects caused by moisture
Cost Improvement	 Cost saved due to the reduced cost for filter clogging/cleaning/replacement Improved power usage Increased productivity by ensuring stable production conditions
Environmental Improvement	 Prevention of oil contamination around the air purification system Easy maintenance due to the simple facility structure → Worker satisfaction improved Reduced air contaminant emissions and odor

Before/After Installation

Inside Cyclone Inside Cyclone

Status of Facility Operation

Facility Operation (2016.8.)

> **OP Side of TCM** (2017.2.)

Entire TCM (2017.2.)

Stand Duct Internal Scum

09

Meeting the Needs of **Business and** More

Improvements after installation of filter-less air purification system

Environmental Improvement Reduced contaminant emissions and odors Improved worker satisfaction Prevented fume exposure

Production/Quality Improvement Productivity improvement Prevented oil contamination

Reducing Pollutant Concentrations and Satisfying Environmental Standards!

We have been recognized as a strong small-sized company in industrial air technology by improving the workplace environment in preparation for the Chinese government's environmental regulations, as well as product quality stabilization and productivity improvement due to reduced pollution and more.

B Steel Installation Result

Project Overview

Improvement

 Construction completed: December 2018 • Installation period: 6 days (including dismantling) Airflow: 4,500CMM

Improvement Requirement

Top priority on environmental improvement

Environmental Improvement	 Reduced air contaminant emissions and odor Easy maintenance due to the simple facility structure — Worker satisfaction improved Prevention of exposure through effective removal of fume Satisfying environmental regulations
Production/ Quality Improvement	 Productivity improvement by ensuring stable production conditions Prevention of oil contamination in facilities/workspaces
Safety/Health	Zero possibility of safety accidents caused by cleaning and maintenance

• Zero possibility of safety accidents caused by cleaning and maintenance

Before/After Installation

After Installation >

Cta	te e	c .	of	Ea	cil	H
วเล	ιu	2	U	га	CII	Ц

Location

TCM Top 1

TCM Top 2

Drive Side

Chimney Rain

ity Operation

Become a New Standard for Solution of Rolling Fume Elimination

Accurate Diagnosis and Reflection of the Business Needs!

Accurate Diagnosis and Reflection of the Business Needs! Our overwhelming measurement result improved by customized solutions is setting a new standard for industrial air technology solutions.

B Steel (China)

			Measurement Result		
Guaranteed Item	Measurement Method	Guaranteed Value	Before Improvement (Existing System)	After Improvement (Our System)	
Oil Mist Concentration	Oil Mist protection China Environmental Protection 5mg/m³ or lower 7mg/m³		0.57mg/m³		
Foul Odor	China Environmental Protection Administration Standard	130 or lower	260	97	
NMHC concentration	China Environmental Protection Administration Standard	10mg/m ³ or lower	15mg/m3	1.76mg/m³	
Fume scattering near TCM	Visual inspection	Fume invisible	High amount	None	
Chimney rain phenomenon	Visual inspection	No chimney rain phenomenon	Severe chimney phenomenon	None	
Airflow	ISO 3966:2008 (Third- party measurement institution)	270,000CMH ±10%	370,000CMH (Spec.)	270,000CMH ±10%	
Noise	1 meter from the facility	85 dB(A) or lower	-	85 dB(A) or lower	

D Steel (Korea)

			Measurement Result		
Guaranteed Item	ed Item Method Guaranteed Value	Guaranteed Value	Before Improvement (Existing System)	After Improvement (Our System)	
THC (Total Hydrocarbon Content)	Ministry of Environment Standard	40mg/m³ or lower	_	0.5mg/m³	
TVOCs (Total Volatile Organic Compounds)	Ministry of Environment Standard	_	_	1.01mg/m³	
Foul Odor	Ministry of Environment Standard	1,000 or lower	_	132 on average	

Institute of Measurement

NMHC

Concentr

Guaranteed Value After Installation Report Results after System Installation Omg/m³or lower THC • 0.5mg/m³ 1.01mg/m³ TVOCs

Category	тнс		TVOCs		
Institute of Measurement	P Envir (Governme air measurer	onment ent-certified ment agency)	K (Korea Testing & F	TR Research Institute)	
Measurement Date	2017.5.16.	2020. 1. 30.	2017.5.23.	2020. 1. 30.	
Place of Measurement	TCM chimney	TCM chimney	TCM chimney	TCM chimney	
Measurement Result	2.6 mg/m ³	0.5mg/m³	3.48 mg/m ³	1.01 mg/m ³	
Result Report					

13

Odor Concentration	Oil Mist Concentration	NMHC Concentration						
Company B (Indu	Company B (Industrial Technology Service Co., Ltd. under Company B)							
	0010 7 0	2010 7 0						

)19.7.9.	2019. 7. 9.	2019.7.9.

Data Measurement Results - B Steel

Category				Foul Odor			
Institute of Measurement			P Environment (Gove	ernment-certified air n	neasurement agency)		
Measurement Date			2017.	.4.10.			2020. 1. 30.
Place of Measurement	Rolling Oil Return Tank	TCM Drive Side	Emulsion House	50 meters away from TCM plant	200 meters away from TCM plant	TCM chimney	TCM chimney
Measurement Result	4	3	4	3	3	120	144
Result Report							

Economic Effects of Installation Case -1 year monitoring after operation of D Steel (Korea)

Economic effects after installation of filter-less air purification system

	Existing Air		Cost (thous		
Category	Purification System (Before Improvement)	system (After Improvement)	Before Improvement	After Improvement	Remarks
Emission	Stand Outer Wall Contamination	Painting cycle (4 months -> 1 year)	20,000	6,000	Labor cost, Painting cost
Removal	Poor condensation of back emission	No surface defects	45,000	0	Improvement cost
Filter Cost	Stagnation and	No replacement cost	100.000	0	Filter replacement and
	decay of emissions	Odor reduction (70% \downarrow)	100,000	0	manufacturing costs
	Stagnation of Emissions in Duct	No cleaning cost thanks to no stagnation of emissions	40,000	0	Cleaning cost
Electricity Usage	70~90% use (350kw X 2 units)	Less than 50% use	505,890	266,112	Reduced power usage
	Loss cost (year)	710,890	272,112	KRW 440 million/year saved

Quantitative Effects - Case-Based

Environment & Safety

Company Name

Company A

Company B

- Protecting workers' safety (preventing the risk of accidents)

Emission Substance

Company Name	Category	Before Improvement	After Improvement	Reduction Rate
Company B	Oil Mist	5mg/m³	0.7 mg/m³	86%
	NMHC	10mg/m³	3~4.5mg/m ³	55%
	FUME	High amount	Very small amount	
Company C	Fine Dust Concentration	1,059 µg/m³	370 µg/m³	65%

Qualitative Factors

Category	Before Improvement	After Improvement
Foul Odor	-	130
Foul Odor	260	100 or less
Chimney Rain	Yes	No

0

Elimination of environmental & safety risks

- Satisfying environmental regulations

Odor reduction by **60**%

Emission reduced by $\mathbf{69}^{\mathbf{\%}}$ on average

Satisfying environmental regulations prevents potential costs such as overcharges and penalties

Innovate with Engineering-**Based Industrial Air Technology**

From Mass & Energy Balance to Required **Airflow Calculation**

We provide total air solution for TCM through industrial air technology ranging from mass & energy balance, condensation quantity calculation, emission substance concentration calculation, evaporation calculation, required airflow calculation, blower specification determination, and to wastewater calculation.

Air Purification Principle

- Mass increase due to collision, blocking and diffusion of water and emission substances
- \rightarrow Acceleration of emissions from venturi throat
- Separation of air/liquid by centrifugal force and gravity in the cyclone
- Elimination of ultrafine dust (PM2.5 or below), oil, acid, and odor at the same time

- Moisture condensation occurs due to saturation
- Especially, Fe dust acts as a condensation nucleus → 80% moisture above ΔT 20°C, oil condensation
- Increasing condensation by increasing $\Delta P \rightarrow$
- Eliminating odor-causing oil, moisture condensation, and Fe dust
- * Securing the optimal driving power value and condensation efficiency

Core Technology

- ΔP calculation according to the acceleration at the venturi throat
- \rightarrow Ensuring driving power through accurate calculation of ΔP of the entire system Calculation of the diameter and height to maximize the effect of cyclone's internal
- centrifugal force and gravity
- Increasing cooling condensation effect due to pressure drop \rightarrow Scum and odor removal effect
- It is possible to recycle condensed water and drastically reduce wastewater generation.

- Temperature drop due to ΔP increase (through venturi) \rightarrow

Discharge or Recycling

Total Mass & Energy Balance

*The example data are of company S.

• The inflow/outflow of matter and energy are the same (First Law of Thermodynamics) \rightarrow Temperature/Humidity of the outflow air is determined

Mass Balance

By change of pressure loss, heat loss, and kinetic/position energy, outlet temperature and relative humidity are determined

Concentration of emissions after n minutes

(water level = 1.2m)

- C_n: Pollutant concentration after n minutes - C_{n-1}: Pollutant concentration after (n-1) minutes - Cout1 : Pollutant concentration of condensate water from W-FLES - Cout2 : Pollutant concentration of condensate water from stack - *V*: The amount of water in the circulation water tank

- Lout1 : The amount of condensate water from W-FLES - *Lout2* : The amount of condensate water from stack

tank is 29g/L.

aas $\dot{m}_{inlet \ duct} = \dot{m}_{cyclone} - \dot{m}_{cond}$ (Condensation Amount) liauid $\dot{m}_{in} + \dot{m}_{cond} = \dot{m}_{out}$

- Energy Balance $\frac{d(mU)_{cy}}{dt} + \Delta \left[\left(H + \frac{1}{2}u^2 + zg \right) \dot{m} \right] = \dot{Q} + \dot{W}$

H = f (Pressure, Temperature, Relative HumidityAmount)

Heat loss due to internal and external temperature difference

Pressure loss due to venturi neck acceleration

 $\rightarrow \Delta P = K_1 \frac{1}{2} \rho v^2 = f$ (Airflow, Water Injection Volume, Sectional Area, Length)

• Pressure loss caused by centrifugal force, gravity, and friction

 $\rightarrow \Delta P = K_2 \frac{1}{2} \rho v^2 = f$ (Airflow, Inlet/Outlet Sectional Height)

• Condensation quantity = [Mass of water in W-FLES inlet gas] -[Mass of water in W-FLES outlet gas]

Emission Substance Concentration

Equilibrium concentration in the circulation water tank

→ After 24 hours (1440 minutes), the concentration of contaminants in the circulating water

Calculation of Evaporation Amount

Calculation of the total calorific value based on frictional heat and plastic deformation heat generated from PCM roll/strip

Plastic Deformation Energy

Symbol	Meaning	Symbol	Meaning
k	dynamic yield shear stress	А	area of contact
σΥ	yield coefficient	С	length of contact
τ	friction stress	W	width of plate
μ	slip coefficient	qf, total	Frictional Heat
pr	contact pressure	c1	fraction of qs carried to the roll
m	shear friction coefficient	К	strength coefficient
vrel	slip velocity	n	strength hardening exponent
vr	linear velocity of roll	R	work roll radius
VS	moving velocity of plate	c2	fraction of qf carried to the roll
qf	heat flux		

Dispensing amount of rolling oil, reflecting property data \rightarrow Calculation of the evaporation amount of rolling oil based on the total calorific value

Q1	•
Airflow rate	75m ³ /s
Temperature	11.7 0
Pressure	101.3kPa
Humidity	58 %

1. Mass balance of water $\omega^1 \rho^1 Q^1 + m w^2 = \omega^3 \rho^3 Q^3$

- m : Mass of water [kg/s]

- p : Density - Cp : Heat Capacity

1'	A	В	с	
	2	3	4	_

Actual Flow Rate 4,500 ± 10%CMM

System SP 3,500 ~ 4,000Pa

Total Power 500 ~ 580kW

Calculation of Required Air Volume

Calculation of the required static pressure from the stand hood to the stack to determine the final specifications (air volume, static pressure) of the blower \rightarrow Air volume (Q) x static pressure (P) = Power required for the blower